

A method to evaluate task-specific importance of spatio-temporal units based on explainable artificial intelligence

Dr. Ximeng Cheng

June 2021

Background

- Spatio-temporal data and data organization
 - ➤ Human activity data (e.g., social media check-ins) and earth observation data (e.g., remote sensing images)
 - ➤ Spatio-temporal units
 - ➤ Data organization in temporal dimension (i.e., time-series) and spatial dimension (i.e., spatial distributions)

Time series Spatial distribution

Background

- Task-specific importance of spatio-temporal units
 - > The contribution of the corresponding unit's characteristics to the task
 - > The unit importance is different in a specific task (e.g., the study of rainfall's impact on traffic)
 - The unit importance will change with the task (e.g., nighttime is not as important as daytime in most studies but crucial in criminal research)

Well-drained segments with lower activity

Poorly drained segments with higher activity

Background

- Suitable methods to evaluate the task-specific importance of spatio-temporal units
 - ➤ The importance of units is task-specific
 - > The method needs to consider the spatio-temporal dependence between units
 - > The assessment results have physical meaning and can be extended to other applications
- Explainable artificial intelligence (XAI) methods
 - ➤ Layer-wise relevance propagation (LRP) algorithm (Bach et al., 2015)

Method

- Spatio-temporal layer-wise relevance propagation (ST-LRP) method
 - Four steps: data organization, data labeling, model training, unit assessment

Method

- Spatio-temporal layer-wise relevance propagation (ST-LRP) method
 - ➤ Data organization: Spatio-temporal tensor data (STTD)
 - ➤ Data labeling: Labeling the STTD according to its spatial or temporal information (e.g., season)

Data labeling according to temporal information

Method

- Spatio-temporal layer-wise relevance propagation (ST-LRP) method
 - > Model training: Labeled STTD as inputs and the training must be sufficient to extract knowledge
 - ➤ Unit assessment: LRP algorithm (Bach et al., 2015)

$$R = \dots = R^{(m+1)} = R^{(m)} = \dots R^{(1)}$$

$$R = \sum_{k=1}^{K} Y_k, R^{(m)} = \sum_{i \in l_m} R_i^{(m)}$$

$$R_{j\to i}^{(m+1)\to(m)} = R_j^{(m+1)} \frac{a_i w_{ij}}{\sum_{n\in l_m} a_n w_{nj}}$$

Experiment

- Case study of spatio-temporal unit assessment
 - > Data: Taxi origin and destination points (OD) collected in 2016
 - > Study area: Center of Beijing, $30 \times 30 \text{ km}^2$ square area
 - \triangleright Spatio-temporal unit: $1 \times 1 \ km^2$ grid in spatial dimension and half-hour in temporal dimension

Experiment

- Case study of spatio-temporal unit assessment
 - > Input data: Spatio-temporal distributions of taxi origin point volume
 - ➤ Classification task: Distinguishing between distributions for weekdays and weekends/holidays

Neural network structure

Experiment

- Case study of spatio-temporal unit assessment
 - > Task-specific importance of spatio-temporal units

Unit importance in temporal dimension

Unit importance in spatial dimension

- Validation of unit assessment results
 - > Replacing the units' values of input data and to evaluate the variation of model accuracy
 - > The more the accuracy decreases, the more the units are crucial for the classification task

- Task-specific assessment results
 - ➤ Samples can have characteristics of both the two categories (e.g., weekends but working day)
 - ➤ Weekday: *Government* POIs
 - Weekend/holiday: Entertainment, life services, and transportation POIs

Contribution value differences based on the same input with different labels

- Spatio-temporal dependence between units
 - > Comparison method: Random forest algorithm

Unit importance in temporal dimension

Unit importance in spatial dimension

- Data compression application
 - > Reducing the element number from 48 to 20 according to unit importance
 - > Spectral clustering (only 4.89% units have different labels after data compression)

Clustering result based on data with 48 elements

Clustering result based on data with 20 elements

Differences between the two clustering results

Conclusions

Conclusions

- > The result of unit assessment is rational, task-specific, and valuable for data compression applications
- > The spatio-temporal dependence between units has been considered
- > The ST-LRP method based on XAI can be used to acquire knowledge in geographical studies

Other

- ➤ Cheng, X., et al., 2020. A method to evaluate task-specific importance of spatio-temporal units based on explainable artificial intelligence. *International Journal of Geographical Information Science*, in press. https://doi.org/10.1080/13658816.2020.1805116
- ➤ Data and codes: https://github.com/GISCheng/ST-LRP

Thanks! chengximeng@pku.edu.cn